Enrollment No: _____ Exam Seat No:_____

C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name: Fluid Mechanics - I

Subject Co	de: 4TE03FLM1	Branch: B.Tech (Civil)	
Semester:	3 Date : 12/01/2022	Time : 11:00 To 02:00	Marks : 70
Instructions (1) Us (2) Ins (3) Dr (4) As	: e of Programmable calculator & a tructions written on main answer aw neat diagrams and figures (if n sume suitable data if needed.	ny other electronic instrument is pr book are strictly to be obeyed. ecessary) at right places.	ohibited.
Q-1	Attempt the following question	ons:	(14)
a) Density of water is maximum a (i) 0°C (ii) 0°K (iii) 4°C (iv) 10	at)0°C	
ł	 Property of a fluid by which m attracted to each other is called 	olecules of different kinds of fluids	sare
C	 (i) adhesion (ii) cohesion (iii) v Which of the following is dime (i) specific weight (ii) specific gravity 	viscosity (iv) compressibility ensionless? volume (iii) specific speed (iv) spe	cific
Ċ	 (i) The units of viscosity are (i) metres² per sec (ii) kg sec/m newton-sec per meter 	netre (iii) newton-sec per metre ² (iv)
e) Kinematic viscosity is depende (i) pressure (ii) distance (iii) flo	ent upon ow (iv)density	
f) Falling drops of water become (i) adhesion (ii) cohesion (iii) s	spheres due to the property of surface tension (iv) viscosity	
g) The term Fluid includes (i) liquid (ii) gases (iii) both (i) & (ii) (iv) none of them	
k) Fluid is a substance that offers (i) pressure (ii) flow (iii) shape	no resistance to change of	
i	 Property of a fluid by which its (i) adhesion (ii) cohesion (iii) 	s own molecules are attracted is cal viscosity (iv) compressibility	led
j) The path followed by a fluid pa i) stream line ii) path line iii) st	article in motion is called a treak line iv) none of the above	
ŀ	 If the Reynolds number is less i)laminar flow ii) turbulent flow above 	than 2000, the flow in a pipe is know iii) transition flow iv) none of the	own as ne
1	 High-velocity flow in a condui i) laminar flow ii) turbulent flo 	t of large size is known as w iii) transition flow iv) none of th	e above
m	An ideal fluid is one where no	friction effects are present. Anothe	r term
		STOR DE LE CONTRACTOR	Page I of 3

And Your Charment

	n)	 for ideal fluid is fluid. (i) Oil (ii) Water (iii) Petrol (iv) Non-Viscous The center of gravity of the volume of the liquid displaced by an immersed body is called (i) meta-center (ii) center of pressure (iii) center of buoyancy 	
Attempt	any	(iv) center of gravity four questions from Q-2 to Q-8.	
Q-2		Attempt all questions	
	a) h)	Define the term: Density, Specific Weight, and Specific Volume. Derive the formula to find surface tension on a Hollow hubble	3 4
	c)	Write a note on types of fluids.	7
Q-3	a)	Attempt all questions Define the term: Vaccum Pressure, Absolute Pressure, and Gauge	3
	1)	Pressure	4
	D)	submerging it into water. Find the specific gravity of the stone.	4
0.4	c)	State the hydrostatic law and derive the formula to find out pressure.	7
Q-4	a)	Discuss continuity equation.	3
	b)	The diameter of a pipe at the section 1 and 2 are 10cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 5 m/s. Determine also the velocity at section 2.	4
	c)	What is Euler's equation of motion? How will you obtain Bernoulli's equation from it and write its assumption?	7
Q-5	a) b)	Attempt all questions Define clearly stream line, Path line, and steady flow. The velocity components in a two-dimensional flow of an incompressible fluid are $u = 2x^2 y$ and $v = -2y^2 x$. State that it is a possible case of fluid	3 e 4
	c)	flow A three-dimensional flow field is described by $V = (2x^2y)i - (y^2Z)J + (yz^2 - 4xyz)k$ prove that it is a possible case of steady fluid flow and calculate the velocity at point (3,2,1).	7
Q-6	a) b) c)	Attempt all questions Mention the distinguishing features between notches and weir. Explain the functioning of the Velocity-Pilot Tube. An oil of Specific gravity 0.8 is flowing through a venturi meter having an inlet diameter of 150mm and a throat diameter of 75mm. The oil- mercury differential manometer shows a reading of 20cm. Compute the discharge of oil through the pipe. Take $C_d = 0.98$ and Specific gravity of mercury =13.6	3 4 7
Q-7	a)	Attempt all questions Define hydraulic gradient line and Total energy line.	3
	b)	Give detailed classification of loss of energy in pipe flow.	4
	c)	A pipeline of a length of 2000m is used for power transmission. If	7
			Page 2 of 3

	110.3625kw power is to be transmitted through the pipe in which water		
	having a pressure of 490.5 N/cm ² at the inlet is flowing. Find the		
	diameter of the pipe and efficiency of power transmission if the pressure		
	drop over the length of pipe is 98.1 N/cm^2 . Take f=0.0065.		
	Attempt all questions		
a)	Define the term: Buoyancy force, Centre of Buoyancy, and Archimedes	3	
	Principle.		
b)	Explain principles of Jet Propulsion	4	
c)	What is dimensional analysis? Explain secondary quantities with	7	

c) What is dimensional analysis? Explain secondary quantities with example

Q-8

